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1__ SUMMARY

The use of high altitude balloons as stable platforms for
metzorological and astronomical obgervatories necessitates ai investiga-
tion ot the dynamic benavior oi balloona. This report deals with tne
azimuthal rotations of the balloon-gondola system. The aerodynamic
damping and 1inertia of the system have been mathematically formulates
and experimentally verified. The forcing toique, mostiy aercdynamic 1in
nature, has bnen described and its order of magnitude hay peen estimated
fcr wnown balloon rotations.

These rotations have veen alleviated in the past by contra:
systems which orient the gondoia by reaction torques applied to tne
balloon. The aerodynamic parameters which are evaluated 1im this report
can b2 useful in the degign of such a control gystea.
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11. INTRODUCTION

We believe that the principal source of the zzimuthal motion
are torques generated in the wake of the balloon, as nuted in our
Report No. 1 of this contract (Ref. 1). As the balloon moves chrough
the atmosphere, the flow of air past the balloon separates, forming a
cylindr.cal vortex sheet in the wake. The sheet 1s highly unstabie and
curls uron 1itself, thus, creating a region of highly concentraced vor-
ticity, Eventually, this region breaks awey from the sheet, and the
process 1s repeited. The overall result 1s a periodic shedding of vor-
tices in the wake. Aerodynamic torques, due to these vortices, can
induce the balloon to exhibit many modes of motion. The az‘muthal or
rotational wmode 13 of inter~:: here. In order io nredict the nature of
these torques in quantitative trms, one must make a thorough survey of
the highly complex wake.

In this report, we present a qualitative description of the
wake behind a bluff body (like a sphere). Our remarks are drawn from
our own experiments as well as the experiments of others.

The torque may be estimated 1f the motion and the dynamic
parameters (inertia, damping, spring constant) of the system are known.
In addition to the fabric and hardware inertia, the boundary layers con-
tribute appreciably to the irertia of the system. The gases on either
side of the balloon exert retarding torques on the balloon, the effect
being that of a damping aerodynamic torque and an apparent additional
moment of i1nertia. Experimental values of the damping aerodynaaic
torque on a sphere rotating with constant velccity were presented 1in
Tachnical Report No. 1 (Ref. 1). Since then, we have made finer and
more compléte measuremente, and the final results are presented in this
report; Also, the experimental verification of the formuls of the ap-
parent additional moment of inertia is presenced here.

With these aerodynamic parameters specified, 2 dvnamic analysis
with numerical examples 1s made of the coupled rotations of the full
scale balloon-gondola system. The magnitude of the forci'ng toiyue 18
estimated for known rotations.




II1. THE WAKE CF A MOVINGC B"UFF BODY

The flow of a viscous fluid around 2 bluff body can be de-
scribed briefly in the follcwing manner. Viscosity demands that the
fluid touching the surfarze of the body be sta:ionary w~ith respect to the
body (no-slip boundary condition). A small distance oway from the sur-
face, the flow is essentially potential (invi:icid). 1In other words, s
thin boundary layer covers the body, through wnich the velocity of the
fluid changes v:ry rapidly from zero at the s:rface to the value of the
potential flow. The thickness of the boundarv layer decreases with in-
cressing Reynolds number (Re? !eonce, for large values of Re, the
boundary layer i{s thin.

The strong viscous fo’ces in and al-mg the boundary layer are
balanced by the pressure gralient in the same direction of the potential
flow outside the layer. At some point behind the front of the body,
this pressure gradient may not b: cble to cancei the viscous forces of
the boundary layer. There, the noundary laye: detachec from the body.
There is, now, & surface starting from the bo’y and extending behind it
in the fluid, on which the vzlocity of the fli:id is equal to zero. In
the two regions separated by this surface, th. flow is in opposite di-
rections; i.e,, we have sepsration of the flo::. The velocity gradients
normal to this surface are v:ry high. Therefcrs, this surface is like
a vortex sheet and, being inherently unstable curls upon itself cre-
atinl a region of highly concentrated vorticity; i.e., a bound vortex.
The vortex is fed from the vorticity generatec at the surface of the
body and, if the rate of generation of vorticity is greater than the
rate of 1ts diffusion througii the fiuid, the vortex grows in strength
continuously. Ultimately, tais bound vortex cscapes and travels in the
wake, and the cycle is repes-ed. The overall result is an occasional
(often periodic) shedding of vortices in the vake. In svoamary, the
shedding of vortices in the sake is due to the separition of the flow
and the instability of the r-sulting vrrtex shzst aud bound vortices.

These phenomeua have bean observed experimentally. FPor a cyl-
inder, the shed vortices are line vortices with their axis parallel to
the axis of the cylinder. T:ey are shed in tivo trails. Since vortex
Lines must be closed (like eiectric current 1ines), the vorticily of one
vortex in one trail is equal and opposite to th: vorticity of one vortex
in the other trail, The two vortices meat at ti:e region of the wake
corresponding to the edges of the cylinder, ttus, forming a rloced vor-
ticity circuit. 1In the ides’ cvss, the two trsils sre paraliel and
neriodic constituting the so-called "Kirman vertex street”. These vor-
tices exert forces on the cy .inder, which can zaquse laterzl motioms of
the cylinder as well as & ro-ation about {ts cxis. Since the vori.city
in one trail is equal and op:osite to the vortirity im the other t:ef),
iusse fcrces are alernating and the resulting otfions oscillatory. rhe
frequency of the oscillation is equal to the i-:quency of the shedding

Arthur D, Wittle. Ine.




of vortices in the wake. A curve has been obtained experimentally, and
relates the dependence of the Strouhal number, St (a dimensionless
parameter proportional to the frequency), on Re (see Fig. 149 of Ref. 2),
Indeed, ic has been shown that the frequency, in which long wires "sing"
under the influence of the wind, can be predicted from this curve.

This curve shows that St increases with Re for 100 < Re <700,
St is essentially constant for 700 <Re < 105, and St increases very
rapidly with Re for 105 < Re < 106, Hence, the wake has a rather well-
defined periodicity in the middle range of Re. In the last range of Re, i
small distrubances of the ambient flow will change the wake radicelly;
the periodicity of the wak= i< lost, and the wake is very confused and
turbulent. -

: The wake of a bluff body with a spherical shape wili have the
same basic features as that of a cylinder with some differences in detail
v due to tiiv differences in geometry. Unfortunately, the wake of a sphere
has not teen studied to the same extent as the wake of a cylinder. Some
revealing expcrimental studies have been pubiished only recently. At
the pregent time, it appears that there is an adequate knowledge of the
wake of a sphera for Re up to about 1,000 only.

—— ——

Magarvey, et al., (Refs. 3, 4 and 5) have taken some excellent -
photographs of the wake of a colored liquid drop fs ling freely in water.
Initially, the drop was accelerating, but it reached a constant velocity
ultivately. Figure | shows the formation of the wake. As the drcp was
accelerating, the flow began to separate and a cylindrical vortex sheet )
appeared (a). This sheet, baing inherently unatable, curled upon itself
more and more (b and c) torming a bound vortex ring. As the vorticity
of the vurtex ring increased, it began to break off from the drop. This
is gshown in photograph (d) taken 0.0l second before the first vortex
ring was dizcharged in the wake. Note that rhe ring is discharged at a
distance behiand the drop of the order of magnitude of the diameter of
the drop. Figure 2 shows the wake of a drop falling with constant ve-
. leeity corresponding to Re = 360 ((b) is L0 seconis later than (a) and
shcws the diffusion of the vortex elements). The vortex elemculs are
distorted rings interconnected with line vortices. There is a definite
periodicity and a separation of the vortices in two traiis. The vortic-
ity of the rings in both trails is in the same direction.

Magarvey obtained an experimental curve for the dependence of
St on Re for 270 < Re < 390. As Re was increased further, the wake ve-
gan to lose its periodicity. This is shown in Figure 3 tu¢ ®e 1040

Figure 4 shows representative results from our own rough ex-
periments. A ping-pong ball was placed in a uniform stream, wh .« speed
was varied so that values of Re up to 6,000 were obtained. Ink, f.owing
out from small h-les on the equator of the ball, made the wakc v, .ole.
At Re = 600 (Fig. 4a), the wake was similar to chat obtarned by Megarvey,

o
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FIGURE 1 FORMATION AND SHEDDING OF VORTEX RINGS IN THE WAKE
OF A LIQUID DROP (COURTESY OF THE "CANADIAN JOUIRNAL

Out PHYSICS )

dethm D Waele, Ine.




FIGURE 2 THE WAKE OF A LIQUID DROP OF REYNQOLDS NUMBER 360.
(COURTESY OF "THE PHYSICS OF FLUIDS")




FIGURE 3 THE WAKE OF A LIQUID DROP OF REYNOLDS NUMBER 1040
{COURTRSY OF "CANADIAN JOURNAL OF PHYSICS™
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and it had a definite perindicity, At Re = 1200 /Fig. 4b), some peri-
odicity was stiil visible. At Re = 2400 (Fig. 4c), the wake was quite
confused with some regions of concentrated vorticity. At Re = 4800
(Fig. 4d), the wake was almost uniformiy turbulent and all perjodicity
disappeared.

This apparent disorder in the wake of a sphere at values of
Re above | 000 must be duz to the presence of a high degree ol ambient
turbulence, or a very senzitive dependence of St on Re, or both. Accu-
rate and well-controlled experiments will clear up this point. At the
present time one thing is rather clear; i.e,, for Re in tne range of
about one to a few thousands, the wake of the sphere 1s incipiently un-
stable, and very small distucovances of the uniform stream (like inherent
turbulence, small ambient flow disturbances, etc.) can alter the form
of the wake and destroy its periodicity. Tnis has been confirmed bty
other investigators (verbal communications) .

As in the case of the cylinder, the wake of the sphere exerts
forces anl torques on the sphere. Therefore, 1¢ the sphere is free, it
can assume quite a few modes of lateral motion and rotation. The same
phenomena will occur for a body like & balloon. These facts have been
confirmed by our experiments with balls and scaled balioons falling
freely in a water tank (Ref. 1).

drethur B.Aittle Ine.,




I1V. DAMPING AERODYNAMIC TORQUE FOR A ROTATING SPHERE

Since the azimuthal rotation of balloons is especially crucial
while they are at or near cheir floating altitude, we have restricted
our atteation to the case of fully inflated balloons. A balloon at
floating altitude is dealized as a spherical shell with an extremely
pmall thickness to ridius ratio. The spherical shape is believed to be
close enough to the union-shape of actual balloons to make the results
applicable, while preserving geometric simplicity for ease of analysis.
It is further assumed that damping is independent of the small values of
vertical velocity.

A simple experiment (Ref. 1, p. 36) was previously described
for obtaining the torque required to overcome viscous skin friction on
a steadily rotating sphere. The goal of this experiment was to provide
a basis for estimating the damping aerodynamic torque which opposes the
rotations of rising and falling balloons.

The results of the first experiment were sufficiently encour-
aging to warrant refining the experiment, While no better means of
measuring small steady torques was found, more precise measurements have
been carried out on a greater number of models which were more highly
spherical. The data extend over a wider range of variables and are wore
reliable than the previous data.

A. EXPERIMENTAL SET-UP

A stainless steel cylindrical tank--) feet in diameter,

2.5 feet deep--was filled with water. Brookfield viscometers (Model RVF)
were used to spin the models at constant speed about a vertical axis and
to indicate the torque required to maintain the steady rotation. One
viscometer had operating speeds of '00, 50, 20, and 10 rpm; the other,
20, 10, 4, and 2 rpm. Each in turn was carefully mounted with its shaft
at the center of the tank. The models were completely filled with water
and submerged so that the '"north pole" was about 3 inches beneath tae
free surfaze.

Eccentricity was minimized by very careful mounting. Still a
small AC disturbance, due to eccentricity, appeared in some viscometer
readings. The average readings over a cycle should not be rffected by
it.

Sufficient time was allowed after gtarting the synchronous
motor in the viscomater for the starting transients to damp o.. (see
furcher discussion below).

Aethur D.Witle, Fne,
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B. SPHERICAL MODELS

The models were spherical aluminum floats (Fig. 5). Each
float consisted of two hemispheres, of about 0.025 inch wall thickness,
welded together at the equator. The welded seams were filed down flush,
and each sphere was sprayed with clear lacquer.

The nominal diameters were 2, 3 4, 5, 6, 7, and & inches, but
the two largest spheres could not be used. They put enough weight on
the viscometer bearing to increase bearing drag prohibitively. The ac~
tual equatorial diame:ers as measured and the mass parameters (for
future reference) are tabulated in Table I. Generally, the equatorial
and polar diameters agreed w' ' Iu about 1/64 inch, but the polar diameter
of Sphere Number 5 was about 3/64 inch less than its average equatorial
diameter.

TABLE 1

DIAMETERS AND MASS PARAMETERS OF SYHERICAL FLOATS*®

Moment of Inertia

Sphere No. Diameter (CM) Mass (GM) (GMCM2) **
1 5.02 19.5 81.9
2 7.58 67.3 646
3 10.12 128.0 2,190
4 12.66 197.6 5,290
5 15.16 186.5 7,170
6 17.66 399.7 20 300
7 20.20 478.1 32,500

*Obtained from the Chicago Float Works, 2330 South Western Avanue,
Chicago 8, Illinois.

**Computed from Moment of Inertia = 1/6 (Mass)(Diameter)2,

l Arthue B Xittle, Fue,
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C. EXPECTED FORM OF THE DAMPING TORQUE

In Technical Report No. 1 (Ref. 1) the form of the aerodynamic
damping torque on a rotating sphere was deduced from theoretical comnsid-
erations of the boundary layer neas a flat plate moving with constant
velocity, Here, the form ~I the torque will be derived from the flow of
a rotating disk, which has many similarities with the flow ol # rotating
sphere and has been compietely solved.

Figure 6 shows the streamlines of the flow in a meridional
plane of an infinite disk and a sphere of radius a, both rotating with a
constant anguiar veiocity &, =nxcept in the neighborhood of the equator,
the flow of the sphere is quite similar to the flow of the disk. Through~
out the disk the boundary layer thickness is constant. For the sphere,
the two boundary layers, which start from the poles, grow towards the
equator, where they collide and erupt. (Nor is the flow of the rotating
sphere nesr the equator like the flow of a rotating cylinder, since in
the latter there is no secondary outflow at all-.}

For the disk, the angular velocity of the fluid decreases to
about 0.03w in a distance § away from the disk, which is given by (see
Ref. 2, Seccson 43):

8- 4.5 W/'f"_w_ (1)

where u and p are the viscosity and density of the fluid, respectively.
Taking 8§ as the boundary layer thickness for the sphere and using the
local velocity v = wasin®, we find that the shearing stress (¥ a v/‘&
acting on the sphere at 0 is approximately 2qual to 0.222 (”‘)1/2“;3/
asin@. Then the damping torque, D, which is equal to the summation over
the sphere of the product of the shearing stress by the area by the dis-
tance frew “h. axis, is approximately given by:

n
D % f [0.222 (P,‘)l/z w? s sin 9] (2 wa? sin 9 dO)(n sin 0).
[+]

Therefore,

D & 1.9 (,9,4)”2«,3"2 8, (2)

Lei us define the pertinent Reynold's number, R, by:

R l;’—' 3)

13
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(a) (b)

FIGURE 6 STREAMLINES IN A MERIDIONAL PLANE OF (a} ROTATING DisK AND (b)
ROTATING SPHERE




B————

and a dimensionless drag coefficient, C), by:
2 4
= (
D pw”a Cy 4)
Then Equation 2 can be put :n the Zorm:
¢, * rort/? (5)

The form of Equations 2 and 5 will be the guide in correlating
the experimental results.

D. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental data are tubulated in Table II. Each datum
point tabulated iw the average of at least three tests. The repeatibil-

ity of the torque measurements was about ! 3.6 dyne-cm.

Figure 7 shows the experimental data plotted non-dimensionally
as Cp versus R. In the experiments R was varied from 670 to 27,300; the
torque varied from 10 dyne-cm to 7130 dyre-cm (i.e., by an amount ap-
proaching three orders of magnitude). Over this wide range, the data
are very well described by the following simple law:

c. = 3.63°Y/? (6)

which appears as the solid line in Figure !'. Combined with Equation 4,
this leads to the formula for the data:

1/2 .4 w3/2

D = 3.6 (pu) N

This compares well with the scanty previous data summarized ty Equation
4.3 of Reference 1 (p. 38). As the spheves were filled witn water,
Equation 7 represents the toral torque fyom extsrnsl and i{nrernal flows.

Equation 6 show: that C, is a function of the Reynola's vumber
ouly. This is experted since the drag here is entirely viscous. Ti-
nonlinear dependence of the torque on w (D proportional to w3'Z ingread

an
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SurinaRi Or SAFPERIMENIAL DALA

TABLE II

Sphere w Torgue,D,
No. rad/gec dyne-cm
i 10.48 471

5.24 162
2.096 37.7
1.048 10.06
2 10.48 2440
5.24 877
2.096 220
1.048 73.6
3 10,48 7130
5.24 2945
2.096 733
1.048 253.5
4 2,096 1746
1.048 675
5.24 6150
2.096 1680
1.048 589
5 2.096 3650
1.048 1210
0.4192 31
2.09¢€ 4020
1.048 1393
0.4192 292

D D 2

U | S ) _ puwa

, L1/zm3/284 'Lw-as R PQ‘—
3.54 0.0431 6.717106°
3.44 0.0593 3.36-103
3.16 0.0864 1.34-10°
2.38 0.0919 6 71-102
3.52 0.0284 1.54°10%
3.58 0.0409 7.6810%
3.55 0.0640 3.08-103
3.36 0.0857 1.54103
3.23 0.0196 2.73-10%
3.78 0.0324 1.37-10%
3.72 0.0504 5.46-103
3.63 3.0695 2.75-10°
3.62 0.03%2 8.55-103
3,96 0.0606 a.27-1o}
3.43 0.0222 2.40°10%*
3.70 0.0379 9,56+103%*
3.67 0.0531 4,78+103%
3.91 0.0334 1.37-10%
3.67 0.0443 6.36-103%
3.97 0.0758 2.74-103%
4 07 0.0367 1.23-104
3.98 0.0408 6.13-103
4.43 0.0895 2.45.10%

* For entries with and without aeterisk, the water temperature was 26°C
and 21°C, respeccively,
slightly different vaiues of R for the

The resulting change ia viscosity cas ed
same values of a and &).

Arthur D Wittle Yuce
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of w as, foi instance, in the case of a rotating cylinder) is, of
course, due to the f7§stence of a boundary layer whose thickness 1s
proportional to w” (see Section IV-C).

Thugs, 1t has been verified that the dependence of 5 on the
various parameters of the problem 1s of the form anticipated from theo-
retical considerations in Section IV-C. The constant of proport.onality
has been determined, and it is essentially independent of the Reynold's
number for the wide range of Reynold's numoers considered here (from
670 to 27,300). Considering the fact that both the internal and the
external flows have contributed equally to the torque given vy Equation
7 (see Section IV-E), it ‘- seen that there 1a & satisfactory agreement
between theory and experiment even in the numerical value of the con-
stant of proportionality (1.9 by theory and 3.6/2 = L.8 by experiment).
Sut this should rather be considered as a coincidence, since in tne
theoxy the value of this constant depends on what exactly 1s taken as
the thickness of the boundary layer. In Section IV-C we defined the
thickness of the boundary layer as being equal to the distance from the
disk at which the angular velocity of the tiuid decreases to 0.03 w .
We can define this thickness at a di1fferent velocity decrease (say
O.lw or 0.0'w), and the value of the constant in Equation 2 will be
different but the form of this equation will be the same, All that the
present theory is expected to give is the correct order of magnitude
for the constant of proportionality.

E. INTERNAL FLOW

As mentioned at the beginning of Section IV-A, the models were
completely filled with water. Therefore, there was an internal as well
as an external flow. The two flows can differ greatly in the following
respect. In the outer fiow, the effects of viscosity rontinuocusly dif-
fuse outward so that the fluid 1s always sieared at the surface., How-
ever, inside the sphere, the etrtecrs of viscosity accumulate, and if the
steady sphere rotation persists long enough, then the fluid inside may
rotate with the sphere as a rigid body. When this happens, there iz no
shearing at the inner surface of the sphere and, therefore, no torque
acting on it.

The effects of viscosity diffuse inward to a depth equal to
the radius a in a time T of the order pnz//4. It will be at least of
this order of time before rigid boly rotation of the internal fluid 1s
possible. For the smallest sphers (sed in the cxperimencs, T .s of
the order of Ll minutes. All readings were taken in much shorter times
afte’ starting the rotation, so we infer that the internal bouniary
layer was relatively thin and the datu zountain contributions “-oe 1in-
terual and external zlows.

Ly
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In order to apply the present results to balloons, which have
different iluids inside and outside, it is necessary to determine the
relative contributions of internal and external flows to the total
torque. An attempt to perform this separation of effects experimentally
was not successful. The models were first filled with water and rotated
in air; then filled with air and rotated in water. In beth cases, there
was too much verticsl lead on the vigccmeter bearing to yield any re-
sults of value. This difficulty could probably be avoided in the future
by using aicohol and water for the two working fluids, and this experi-
ment is .ontemplated,

On the other hand, ‘222 in the experiment both internal and
external boundary layers were very thin, it seems reasonable to assume
that the internal and external flows contributed the same anount to the
total measured torque. This assumption is supported by the results of
Lamb (Ref. 6), who analyzed theoretically the small amplitude rotational
oscillations of spherical shells with fluid either inside or outside the
shell. He found that the hydrodynawic torques from internal and external
flows are identical when the boundary iayers are ve.y thin.
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V. APPARENT ADDITIONAL MOMENT OF 11ERTIA FOR A ROTATING SPHERE

The precedin section has dea't with the torque arising from
the steady rotation of the zero positior., However, an additional reac-
tive torque js associcted with rotationsl accelerations, which is the
subject of this sectica,

When any solid bcZly moves witl: coustant velocity in an incom-~
pressible and inviscid fluid, the net fcrce exerted by the fluid on the
body is equal to zero., On the other hard, when the body moves with a
constant acceleration, the surrounding {luid exerts onm the body a net
retarding force vwhich :s proportional tc ~he acceleration. This effect
has become known as th: "apparent or induced mass' effect, since the
body appears to have more mass when accelerated in the fluid.

¥or a smooth sphere accelerstiag angularly about its axis in
a viscous fluid, a sim.lar type of effect occurs. However, the physical
mechanism causing thie effect is now diffzrent. Here, viscosity demands
a "no~-slip" boundary c.ndition on the suriace of the sphere (or balloon).
Consequeritly, whenever the balloon acce!:vates angularly, some of the
surrounding air and coitained helium mus: accelerate with the balloon.
Hence, a net retarding torque is exertec «a the balloon by the air and
hel{um, 1In addition tu a damping effect, this torque contains an in-
ertial effect referred to ae the '"appare:i additionsl moment of inertia"
of the balloon.

For most solid bodies, with thin boundary layers, this increase
in inertia is negligib’e compared to ths: already in the system by vir-
tue of solid mass. Hovever, fully infla:-d balloons have a very small
moment of inertia (for bodies of their si:e), and the apparent additional
coment of inertis ieg s gnificant, The f:llowing experiment was Intended
tc provide sn estimate of the effect.

A. DESCRIPTION OF THE "XPERIMENT

In the sxperiment,6 a sphere, {amersed in water, was given a
constant initial rotati{on and then the dicay of the rotation, due to the
viscosity of water, war recorded. From :his record, the apparent addi-
tional aoment of inertia of the sphere w:s calculated.

A photograph s>f the expsrimental get-up (s ehowm in Figure 8.
A tank, 3 feet in diam:ter, was filled with clean tap water to & level
of 2.5 fest. Some of :he sphericsl mode ., described in Section IV-B,
vere threaded on thea end of & 12~-i{nch lo:: and L/4-inch disxete pre-
cisiom ground stainlies: steel shaft. Th: 3haft was placed {n a %4~inch
long stainless s“eel cylindrical bearing i »lder having two precir._.n
stainless steel vearinis, one at 2ach en:. This system was suspended

<0
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vertically along the centeriine of the water tank by wounting the bear-
ing holder to a heavy wood framework (see photograph). The upper bear-
ing was a thrust besring supporting the net weight of the model and
shaft, while the lower was a simple radial bearing to minimize lateral
motions, From the manufacturer's data, the frictinnal torque of the
bearing is about 200 cm dynes for a thrust of 200 gw. The level of the
water in the cank was about 5 inches above the top of the model.

The upper end of the shaft protruded upwards from the bearing
holder asbout 2 inches. There, a thin aluminum circular digk (to be de-
scribed later) was attached to the shaft in a horizontal position &nd,
above the disk, a tee-ghared driving yoke. Located above the yoke was
& driving mechanism consisting of & laboratory stirrer with variable
speed coupled to a "Zero-Max" speed reducer. The cutput of the driving
mechanism was variable from zero to about three revolutions per second.
On the output of the speed reducer, there was a simple two-pin clutch
which engaged the tee-shaped driving yoke. After tne system was brought
up to a preselected speed, the clutch was disengaged and the rotating
mags was free to slow down. The decay of Lae rotation of the spherical
model, due mostly to viscous effects, was recorded by an optical system.

The light source (prefocused beam) and the detector (photo-
duo-diode) of the optical system are mounted opposite to each other in a
C-shaped frame. 1In the experiment, this frame was placed so that the
aluminum disk irterrupted the light path. The disk had small holes,
placed evenly on a circumference, through which the light beam passed as
the disk rotated, Thus, a pulsed signal was generated by the detector,
which was amplified and displayed by a time-basc event records:i. The re-
sulting data, consisting of a sequence of sharp pulsas, gave the angle
of rotation versus time. From these, the angular velocity of rotation
was calculated as a function of time.

Wobble, due o eccentricity, was minimized oy very careful
mounting and by inserting soft rubber in the mounting of the bezring
holder to the wood framework. To reduce bearing loads, the models were
filled with water. All experiments were performed in calm water.

The initial speeds sere selected so that, fo. che most part of
the duration of the decay, the Reynold's number was within the range in
which the damping aerodynamic torque was maasured in Section IV (700 to
27,000) .

B. EXPECTRD FORM OF THE APPARENT ADDITIONAL MOMENT OF INERTIA AND
OTHER THEORETICAL CONSIDERATIONS

Consider the sphere rotating with a consrant angula: ‘zlocity
. It has becr pointed out im Section IV-C that the flow iy (e
similar to that of » rocating disk (see Fig. 6). Taking the tni:kness
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of the boundary layer § as given by Equation 1, the total angular mo-
mentum of the fluid in the boundary layer of the sphere 1s given ap-
proximately by:

L
J/ (priifya? stn? 2wl aime a0 = 19 ('t wiet
¢

The torque exerted by the fiuid on the sphere is the steady torque
dealt with in the preceding section.

Suppose, now, that the angular velocity of the sphere is
changed by an amount A¢ In a time At. The surrounding viscous fluid
will resist this change, and in addition to the steedy torque D, it will
exert on the sphere a torque equal to the time rate of change of its
angular momentum as found above. Therefore, the apparent additional
moment of inertia L, of the sphere is given app~oximately by:

1 & 19 (P/‘)”Z w-l/Z ‘4

A 8)

Actually, this is a quasi-steady state analysis, not always
valid. It hse been assumed that the time At, in which the change Aw
occurs, is much larger than the time required for a disturbance occur-
ring at the aurface of the sphere to diffuse through the boundary layer,
so that the boundary layer remairs just about iu}ly grown during the
change in . This latter time is of order p 8¢/ = 1l/w. The condi-
tion for the validity of the above analysis is a condition on the magni-
tude of the angular acceleration of the sphere, which can be stated as:

bdw o 2 (9)

At

Neglecting bearing friction, the rotation of the sphere amust
satisfy tne following differential equation:

d r
o L(x R 211\),.,] .20 = 0 110)

23

Aethur B Little Inc.




where 1 is the material moment of inertia of the spherical shell. The
factor of 2 appearing in front of I, and D accounts for both external

and intcrnal flows, which, it is assumed, contribute equally (see
Section Iv-E). I, will be taken in the form of Equation 8 but with an
unknown constant of proportionuslity to be determined from the experiment.
D will be taken as found in Section IV, That is:

. i/2 & -1]2
K ‘Pl‘) / a w

1.8 (p,‘)l/z a6 tu3/2

Let w, denote the value of ¢ at t = 0. Substituting
Equations 11 and 12 in Equation 10 and introducing the {following dimen-
sionless quantities:

3.6 (PF)UZ a? wol/Z
= t
1

/2 4

(wo)1
X (PP)1/2 i

the solution of Equation 10 is:

1/2
(—‘1,2) = -ad [(1 ca)t s g ‘r]""z (15)
[

Notice that the parameter d is the ratio of iLie material mo-
ment of inertia of the spherical shell to the apparent additional moment
of inertia due to the external or internal flow at initial conditions.
T is a dimensionless time. The experimentsl results will be plotted as
(a;o/uj)l/z versus T . Then from the family of curves giv~: Ly Equation
15, the cuive that fits the experimental results best wi'l be zelected.
This determines the value of & from which the unknown constant K can be
computed.
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C. EXPERIMENTAL RESULTS AND LiSCUSSION

The results of three experimental runs are tabulated in Table
111, The three models were filled with water, The results satisfy the
following three conditions, and therefore, the theory developed 1in the -
preceding section 1s applicable;

1. The toial tume for each run is much less than Pazl [
and, therefore, the assumption, that the hydroaynamic
effects of the internal and external flows are equal,
seems reasonable.

2., The Reynold's number (p wz a‘/{‘) is within the range
(700 to 27,000) in which the damping aerodynamic torque
has been determined.

w

The condition of small angular accelerations, as stated
by Expression 9, 1s satisfied.

The experimental points are shown in the normalized form
[(a_;c,/g.))l/Z versus T) on Figures 9 - 11. Notice that there is an
ogcillation due to a slight wobble of the models. Three theoretical
curves (Equation 15) are drawn for each experimertal run. In each case,
the middle curve represents the best value of the parameter d. The
value of & for each run, as well as the corresponding value of .ne un-
known constant K (computed from Equation 14), is shown in Table IV. The
average value of K for the three runs is .2, Thetrefore, for either ex-
ternal or internal flow:

/ -
I = 22 (p/[)l*z a® w 1/2 (16)

Nutice that the theoretical and experimental values of the -~
constant of proportionality in the formula of I, (Equations 8 and 16)
agrie quite well (see, alsn, the last paragraph of Section IV-v).

We believe that there 1s enough evidence, in the above experi-
mental results, supporting our contention that Equation 16 will give, at
least, a fair estimate of I, for the internmal and external flows under
the above stated three conditions.
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TABLE I11

SUMMARY OF EXPERINENTAL RESULTS

Sphere #2 Sphere #3 Sphere #5 \
~ e o~ ~ o «~ -~ < o~
(%) %/\{U ~ o ) [0 ~ v PN [} = H
v SRR IO I T ) ] 1] w o] N - 0 Miow| N | ~
L] o ~ Of -~ ~ L] o o~ A e ~ ] o = 2 (ol ~~
' L I V] N ~ U M ~ ~ - U M -
36~ wao|l 3 30w el 3 30~ @ 3
[ o0 =~ A ~ -~ D 4 | ~ [V o — g =
BorEgylgg 2] & 123 58] 2o & |s239 s Y
~ <
~ o 27 3} & 25 3] & 2 3 |
Nt A A 4

0 12.000] O [1.00 0 (l.000f O |1.00 0 ]0.2366
0.5011.72240.21}1.08 1 0.73/0.833) 0.20|1.10f 1.95{0.1826| 0.40|1.14

(=]
—
————

1.3411.29010.5511.25 | 2.14}0.538| 0.59]|1.36§ 4.46210.1449| 0.91[1.28 ’
2.19(1,081{0.9111.36 | 5.85|0.346] 1.60|1.70f 7.55]|C.1146] 1.55|1.44
2.69(0.920{1.11(1.47 §10.90)0.231} 2.99{2.08 § 11.40(0.0952) 2.34|1.58
3.3111.77
4.8010.63311.9911.82 §19.63{0.148| 5.39{2.60] 22.08{0.0601{ 4.54}1.99
6.5810.50912.72}1.98 1 24.5210.116) 6.6712.93§ 27.72}0.0543| 5.71]2.09
8.7610.41713.6212.19 B 27,72 0.100) J.06173.16 7% 33.3510.0432) 6.86{2.34
10.69)0.341|4.43)2.42 §30.38|0.088| 8.3413.37 § 38.45]/0.0357} 7.91|2.57
12.30|0.286(5.09}12.65 §32.46|0.075| 9.1913.65) 44.7410.0286 9.20{2.88
13.64(0.266(5.65|2./4 337.21|0.060}10.21{4.09 3 53,54|0.0211|11.01}3.35
14.5110.25316.01|2.81 J41.29|0.050)11.33)4.46%63,33{0.0183{13.02(3.60

15.12]0.23016.26|2.95 §/44.53]0.040(12.2215.00
15.5610.22716.45}2.97 §47.36/0.032|13.00(5.64
16.01]0.2)716.63(3.03 §49.9110.026|13.70)06.21
16,3610.,21316.78(3.07 §52.52|0.022¢14.28(6.7/
0.01/

- 3.3710.776|1.40]1.61 §15.08{0.186| 4.14]2.32§ 16.09]/0.0756
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TABLE IV

\* ==

EXPERIMENTAL DETERMINATION OF THE CONSTANT K

Sphere No. E;‘gfi;‘n:‘f‘t:i jv'_;;i)iepu;;dx !
2 4.5 25 !
3 4.0 21 -~
I 1.3 n

Average Value of K: 22

——— )

3v
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V1. THE AERODVNAMIC PARAMRTERS OF FULLY INFLATED EALLOONS

It 1s assumed that a fully inflated bulloon at high altitudes
can be idealized as a spherical shell.

For a balioon, the inside ana outeide gaces are dyfferent
(helium and air). The ratio of the value of (p Y "<« for helium to
that for air is equal to about 0.40 and 1s independent of the altitude
of the balloon. Applying the results of the preceding twc sections, we
obtain:

/2 &« 372 -
0 = 2.5 (pt? et ¥ (17)
/2 4  -1/2
IA = 3l (pu) a W (18)
where and pertain to air and a 18 the equivalent radius of the

balloon. Equations 17 and 18 are representations of Equations 7 and 16,
respectively, for a helium filled sphere in air.

Equation 17 is valid for a steady rotation which satisfies the
tollowing two conditions:

l: The Reynold's number (Pwlz/,‘) must be in the range
700 to 27,000.

2. The time of the duration of the ostesdy rotation must
be much less than gal/y . (For times much larger than
P 2%/4 , the contribution of the internal flow is negli-

gible, and 2.5 in Equation 17 should be replaced by 1.6.)

The above .wo expressions are also applicable to an unsteady
rotatis>n which sat.sfies the following additicnal coadition (see
Section IV-B).

3. The angular acceleration must be small, 1.e.%
dw 2
T <<w (19)

Consider a hallcon with a radius of about B0 teet near ce.'ing
at an altitude of 80 000 feet. At this altitude, the vaiues of the
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~ kinematic viscosity (/L/ ) for the atmosplicre and the helium inside
‘ the balloon are about 3.4 x 10-3 and 2.4 x 10-2 ftz/sec, respectively.
Therefore, condition 2 states that the duration of a steady rotation
should be much smaller than 70 hours, which is easily satisfied in
practice. Condition 1l requires that the angular velocity should not
exceed 0.9 rad/sec, which is also satit“1ed in practice. As for condi-
tion 3, it is satisfied by the rather smooth oscillations of the
November 1959 Project Strato-Lab Flight but not by the violent osc.lla-
tions of earlier (1955 and 1935) balloon flights (see Figs. 2, 3, and
4 of Ref. 1).
Table V shows th~ .lues of D and I, for two values of W,
< representing roughly the maximum and minimum angular velocity of the
L above Strato-Lab Flight at ceiling. The radius of the balloon was abuut
80 feet. The weight of the balloon fabric, constructed of 2 mil poly-
‘ ethylene, was 1100 lbs. Therefore, the moment of inertia of the material
\\ of the balloon was about 1.5 x 109 slugs fe2, ]

TABLE V l
VALUES OF THE AERODYNAMIC EFFECTS FOR A BALLOON OF

80 FEET IN RADIUS AT AN ALTITUDE OF 80,000 FEET i

N Apparent Additicnal
* Angular Velocity Damping Aerodynamic Moment of Inertia !

w (rad/min) Torque-D (ft lbs) 1, (slugs fr?)
{ 0.2 0.09 10°
0.04 v.0C8 2.3 x 10°

Thus, the apparent additional moment of inertia is comparable
to that of the fauric iu the range of angular velocitics indicated in
Table V. Considering the large size of the balloon, the total moment
, of inertia and the damping torgque (seredynszic) arc, indeed, amall.
Small momen. of inertia makes it easy to set the balloon 1in rotatiom,
+ and small damping results in a very slow decay of the rotatjon. Hence,
bzlloons can be very easily rotated.

Pinally, we like to present & very orief review of the exist-
I ing literature on the aerodynamic parameters of a rotating aphe 3 gnd
discuss thelr applicability to balloon rotations. Lambd (Ref. ) bas
dealt with the p oblem of & sphere with sinusoidal rotation ‘u » .scous
fluid., Since balloons experience oscillating rotations fraqueacly, it

(=]
3]
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appeirs, at first, that Lamb's results can be very useful in analyzing
thrse rotations. However, he considered very small Reynolu's numbers,

iu which case the convec.ion terms in the momentum equation of the fluid
can be neglected. Thus, he was able to solve in closed form this sim-
plified linear problem (the general problem, with the convection terus
included, 1s nonlinear). His results for the damping aerodynamic torque
and apparent o‘ditional moment of inertia depend linearly on the awpli-
tude of osc.ilation. Notice thar, in Equations 12 and 18, the dependence
of UV and 14 on W 15 nonlinear, which shows that the convection terms

are includeg in our treatment. The Reynold's numbers involved in balloon
rotations ave b.zh, and Lamb's results are not applicable.

Car-ier and Di Prima (Ref. 7) considered the sume problem with
the convection terms. iney formulated tue solution in the form >f an
inlinite series in ascending powers of the amplitude of oscillacion, and
they computer the first linear term (a special case of Lamb's solution)
and the next . uadratic term. Their two-terms solution 1s accurate enough
when the foliuwing two conditions are satisfied, The firet is a condi-
tion on the frequency of oscillation which can be satisfied only by the
most rapid balloon oscillations. The second is, naturally, a restriction
on the amplitude of oscillation (it must be small) which is not always
satisfied by balioons. Carrier und Di Prima's results are so restrirtive
that thev can be applied to the rotational oscillations of balloons only
in apecial circumstances,

33
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VII. OYNAMICS OF BALLOON ROTATIONS

Now, that the aerodynamic parameters of the ballcon have been
determined, the equations of motion may be written for the coupled ro-
tations of the balloon-gondoia system.

Let 6) and ©; denote the angular displacements uf the talloon
anu gondola, respectively. Then the apparent additional moment of 1in-
ertia (IA) and the damping aerodynamic torque (D) of the balloon are
given by (see Equations 17 and 18):

= “'éll-m

D - pélIélll/z (21)

A "dot" 1ia used to denote the derivative with respect to time. The ver-
tical bars mean "atsoiute value of’. They are necessary, since I, must
be positive and D rust oppose the motion always. The constants @ and
/3 are givan by:

1/2 2t (22)

ot 31 (P}l)

1/2 a“ (23)

po= s pw

Let I} 2ud I; denote the fabric momenis of inertia ol the
balloon end gondola, respectively, and k the effective torsional spring
constant of fhe suspension system between balloon and gondola. Let Tl
and t2 be the torques applied to the balloon and gondola, respectively.
The equations of metion of the system are:

AN R CR TN R - NN TN RN TR

2)

1,9 -k (8, - 9) - t2
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Aerodynamic effects on the gondola have been neglected. For specified
a2 applied torques, the angular displacements of the balloon and gondola
can be found from the above equations.

. p A, SINUSOIDAL ANALYSIS: THEORY

- i Suppose that sinusoidal torques (T ; and ‘r,) of given ampli-
T tude, frequency, and relative phase are applisd to the system. Ulti-

’ mately, the system will reach a periodic steady state., Due to the non-
linearities of the system,6 the angular displacements (0; and 6;) will
have an infinite spectrum of harmonics in addition to the fundamental.
The spectra of @) and 8, can be computed, but the procedure is much moie
tedious than that of the reverse problem, that is to say, for given
sinvsoidal @ and 9,, compute the spectra of the required T and T,.
With regard to the fundamental components, the two problems will give
approximately the same results.

Let ) and 9, be specified as follows.
9l = Al cos wt (26)

A2 cos ot + A'2 sin gt (27)

N
]

where Al' A; and A‘z are constants. Then, it can be shown that;

éliéll'”2 . - (uAl)l/Z(l.H sin Wt + 0.159 sin Jewt + ....) (28)

/

T 6,16, 12 = - (wap¥ 0,917 stn @t - 0,102 sin JwE + i) (29)

Substituting Equations 26 to 29 in Equationa 24 and 25, we
find that T, has only the fundamental component () wnile T) Las an
infinite rumber of components (&, 3w, 5w ...). Let the fuadamental
components of T; and T, be denotea by.

‘t, = Tl <O8 Wt + Tll sin wt (30)

i

TZ .

12 cos Wt + T 2 sin
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where T}, T'y, T, and T', are four unknown constants. They are deter-
ained from the following four equations:

12, U2 o,

2 3
(-w Il + k) Al -lllaw 1

2

/2,32

3
-0.917 8 w7 A )

2
(~w Iz+k)A2-k!i.l

2
- - '
(~w 12 + k) A 2

Equations 32 to 35 relate the fundamental components of the
applied torques and angular displacements. Of the seven quantities (Al*
Ag, A'9, T}, T'), Ty, and T'jy), three must be specified The remaining
four can then be computed. The apparent paradox, that we cannot specify
all the torques (T), T'}, Tz, and T'y), 18 resolved when it is noted
that the phase of 0, has already been specified.

As the harmonic components decrease very rapidly (see, for
instance, Equations 28 and 29), a solution, which involves only the
fundamental components, is adequate in this highly nonlinear problem.
The error is about 10 percent.

B. SINUSOL{DAL ANALYSIS: NUMERICAL EX'MPLE

As a numerical example, we wil! consider the November 1959
Project Strato-Lab Flight at cei'ing. Reasonable values for the param-
eters of the system are as follows:

5.8 = :03 fr 1lbs slc3/2

3/2

a
Y. 4.8 x 103 ft lba sec

1.5 x 10S slugs ftz
1,100 slugs ft’

110 fu lbs
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The calculation of d, /9 and I} has been based on idealizing
the balloon as a spherical shell 80 ft in radius and weighing L100 lbs.
The value of I, was obtained by idealizing the gondola as a solid cir-
cular disk ¢ ft in diameter and weighing 3500 lbs. It was observed

during the flight that the period of torsiona;zoscxllatxons of the gon-
‘<) was about 20 seconds.

dola with respect to the balloon (2 ﬂ’(Iz/k)l
Hence, the above value of k 18 obtained.

Sincg 11> > I,, the resonant period of the system 1s very close
to 21r(12/k)1 ¢. The value of this period is 20 seconds, corresponding
to a freauencv of 0.3 rad/sec. At resonance, a very small torque ap~
plied to tne balloon produces emall oscillations for the balloon and very
large oscillations for the gondola, while a very small torque applied to
the gondola produces very large oscillations for the entire system, es-
pecially for the gondola. The flight data (Fig. 3, Ref. 1) show that
such a period was not present at ceiling. The minimum period was about
10 minutes and the maximum about 40 minutes, corresponding to maximum
azd minimum frequencies of 0.0l and 0.0025 rad/sec. Within this range
of frequencies, we will compute from Equatione 3Z to 35 the angular dis~
placements for given applied torques.

First, consider the case of the torque being applied to the
balloon only. Then the angular displacement of the gondola is approxi-
mately equal to that of the bhalloon. Both are approximately 180 degrees
out of phase with the applied torque. The amplitude of the angular dais-
placements 1s shown in Table VI for various values of the amplitude and
frequency of the applied torque.

TABLE VI

AMPLITUDE OF ANGULAR DISPLACEMENT IN RADIANS FOR VARIOUS VALUES
OF AMPLITUDE (T) AND FREQUENCY (w) OF APPLIED TORQUE

T i [ I ' !
fr 1bs v g 4 5.8 10

w
rad/sec

0.0025

0.005

0.01

*Because these equations are nonlinear in A}, 1t 1s much easier Lo do
this coaputation in reverse; {.e., assume values of the displacement £
the balloon (A}) and compute the requi.ea torques and the displacemeuc
of the gondola
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We see that, as the frequency increases, high2: tcrques are
required in order to have the game displacewent. This is so, because
the above frequencies are smaller than the antiresonant frequency of the
system, vhich is equal to about 0.707 times the resonant frequency; i.e.,
0.22 rad/sec.

Next consider th' case of the same torque being applied to the
gondola. Then, the angular displacements of the balloon and gondola are
approximately in phase. They are approximately 180 degrees ou. of phase
with the applied torque. The amplitude of the displacement of the bal-
loon is again given by Tabie VI, but the amplitude of the displacement
of the gondola is now differcu. (iable VII). We asee that, as the fre-
queacy increases, the displacement of the gondola becomes smaller than
that of the balloon. [his is so, because, in addition to the above dis-
cussed antiresonant frequency of the entire system, in this case the
gondola has ancther antiresonant frequency. Due to the nonlinearities
of the system, the value of this frequency depends on the amplitude of
the applied 78rque. However, it can be shown that it cannot be larger
than (k/Il)1 = 0,027 rad/sec. Obvicusly, for the larger frequencies
of Teble VII, the gondola is near this antiresonance.

TABLE VII

AMPLITUDE OF ANGULAR DISPLACEMENT IN RADIANS FOR VARIOUS VALUES
OF AMPLITUDE (T) AND FREQUENCY (w) OF APPLIED TORGUE

T

ft lbs
w
rad/sec

0.0025

0.005

0.01 0.4 0.8
1

The above angular displacements are of the same order as those
shown by the flight data. We see that the required torques ars rather
small. It seems that they can arise easily from aserodynawic effects
(the wake behind the slowly rising or falling balloon, etc.). The smaller
of thase torques could, also, be caused by the motion of matter in the
gondola (telescope, operator, navigator, etc.).

For the ibove frequencies and aaplitudes of the applles :.rques,
the aerodynamic damping on the balloon {s very small, but the zpparent
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additional moment of inertis of the balloon ie comparable to 1ts material
moment of 1inertia.

The criteria for improving the stability of the gondola depend
on the place of application of the torque. In general, the moment of
inertia of the gondola will be, at mosc, of the same order as the momecnt
of inertia of the balloon, Then, when the torque is applied to the bai-
loon, the stability of the gondola is improved as k/I; 0. On the other
hand, when the torque is applied to the gondola, the stability of the
gondola is improved as k/1) = 0, In other words, for torques applied to
the balloon, the gondola musi be decoupled from it; vhile, for torques
applied to the gondola, the gondola must be well coupled to the balloon,
These two criteris cannot be satisfied simultaneously. A compromise must
be xade, which will depend on the nature of the torques applied to the
balloon and gondola. Considerable damping will, also, improve the gta-
bility of the system, but as pointed out already, the damping in balloons
(aerodynamic) 1s very small.
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